Metatheoretic Results for a Modal lambda-Calculus
نویسندگان
چکیده
This paper presents the proofs of the strong normalization, subject reduction, and Church-Rosser theorems for a presentation of the intuitionistic modal lambda calculus S4. It is adapted from Healfdene Goguen's thesis, where these properties are shown for the simply-typed lambda calculus and for UTT. Following this method, we introduce the notion of typed operational semantics for our system. We de ne a notion of typed substitution for our system, which has context stacks instead of usual contexts. This latter peculiarity leads to the main di culties and consequently to the main original features in our proofs. Since the original proof was extended to an inductive setting, we expect our proof could also be extended to a calculus with higher order abstract syntax and induction. Key-words: MODAL LOGIC, LOGICAL FRAMEWORK, TYPE THEORY, STRONG NORMALIZATION, CONFLUENCE Résultats métathéoriques pour un lambda calcul modal Résumé : Nous présentons dans ce travail les preuves des théorèmes de forte normalisation, conservation des types et Church-Rosser pour une présentation du calcul modal intuitionniste IS4. Nos démonstrations s'inspirent de la thèse de Healfdene Goguen, dans laquelle les mêmes propriétés sont établies pour le lambda calcul simplement typé et UTT. A la suite de H. Goguen, nous dé nissons les notions de sémantique opérationnelle typée et de substitution typée pour notre système. Ce dernier met en jeu des piles de contextes au lieu des contextes usuels. Cette particularité est à l'origine des principales di cultés et par conséquent des principales nouveautés introduites dans les preuves. Comme la méthode originale a été étendue avec succès aux types inductifs (UTT), nous espérons pouvoir étendre notre travail à un calcul où la modalité permet de mélanger la syntaxe abstraite d'ordre supérieur avec l'induction. Mots-clés : LOGIQUE MODALE, THEORIE TYPEE, FORTE NORMALISATION, CONFLUENCE Metatheoretic results for a modal lambda calculus 3
منابع مشابه
J-Calc: A Typed Lambda Calculus for Intuitionistic Justification Logic
In this paper we offer a system J-Calc that can be regarded as a typed λ-calculus for the {→,⊥} fragment of Intuitionistic Justification Logic. We offer different interpretations of J-Calc, in particular, as a two phase proof system in which we proof check the validity of deductions of a theory T based on deductions from a stronger theory T ′ and computationally as a type system for separate co...
متن کاملMechanizing metatheory in a logical framework
The LF logical framework codifies a methodology for representing deductive systems, such as programming languages and logics, within a dependently typed λ-calculus. In this methodology, the syntactic and deductive apparatus of a system is encoded as the canonical forms of associated LF types; an encoding is correct (adequate) if and only if it defines a compositional bijection between the appar...
متن کاملA Mixed Modal/Linear Lambda Calculus with Applications to Bellantoni-Cook Safe Recursion
This paper introduces a simply-typed lambda calculus with both modal and linear function types. Through the use of subtyping extra term formers associated with modality and linearity are avoided. We study the basic metatheory of this system including existence and inference of principal types. The system serves as a platform for certain higher-order generalisations of Bellantoni-Cook's function...
متن کاملfor modal mu - calculus
We define analogues of modal Sahlqvist formulas for the modal mu-calculus, and prove a correspondence theorem for them.
متن کاملComputational Types from a Logical Perspective
Moggi’s computational lambda calculus is a metalanguage for denotational semantics which arose from the observation that many different notions of computation have the categorical structure of a strong monad on a cartesian closed category. In this paper we show that the computational lambda calculus also arises naturally as the term calculus corresponding (by the Curry-Howard correspondence) to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Functional and Logic Programming
دوره 2000 شماره
صفحات -
تاریخ انتشار 2000